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Heat-resistant cast austenitic stainless 
steels are the backbone of the 
chemical, petrochemical, heat-treating, 
and metals processing industries 

• Tubes for Ethylene cracking, and other chemical 
processes 

• Radiant burner tubes and fixtures for heat-treating
furnaces 

• Transfer rolls for steel mill furnaces 

• Coiler drums for Steckel mills 
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Principal Issues 

• Current H-series alloys have reached their limits 
in their high temperature strength properties and 
their upper use temperature 

• Additions of alloying elements have been based 
on production experience. Such additions 
improve strength but with side effects such as 
formation of sigma phase or other embrittling 
phases 



4 

OAK RIDGE NATIONAL LABORATORY 
U. S. DEPARTMENT OF ENERGY 

Goals of the Project 

• Increase the High-Temperature Creep 
Strength by 50% 

• Increase upper Use Temperature by 30 to 
60ºC (50 to 100ºF) 
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Objectives of the project 
• To use scientific methodology and computational alloy 

development tools to modify existing cast heat-resistant 
austenitic stainless steels 
− Create a favorable microstructure and control the 

microstructure that develops in specific components during 
service exposure. 

• To develop a computational tool that facilitates alloy 
selection for specified properties and is based on the 
knowledge developed from this project 
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Energy Benefits 
Higher operating temperatures will result in more efficient 
processes 

Energy savings: 38 trillion BTU in the year 2020 
Assumptions: 

Chemical Industry: 0.5 % improvement in the ethylene 
cracking process 
Steel Industry: 1.0 % improvement in the heat-treating 
operations and hot rolling of steel 
Heat-Treating Industry: 1.0 % improvement in the 
efficiency of heat-treatment furnaces 
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Economic Benefits 
Cost savings of $185 million in 2020 due to: 

• Reduced costs due to energy savings 

• Better production efficiency 

• Reduced downtimes 

• Reduced consumption of components 
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Multi-Industry Participants 
Primary Participant 

Duraloy Technologies Inc. 

Users 
• Bethlehem Steel Corporation 
• Harper International 
• IPSCO 
• NUCOR Steel Corporation 
• The Timken Company 

Technology Transfer 
Energy Industries of Ohio 

National Laboratory 
Oak Ridge National Laboratory 
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Approach to Achieve the 
Program Goal 

• Computational Thermodynamics and 
Kinetic Modeling to Identify the Phases 
Present in the Cast Compositions of HK 
and Modified HP 

• Micro-characterization of Phases Present 
to Verify Predictions 

• Design and Cast New Alloys 
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Approach to Achieve the 
Program Goal (Continued) 

• Conduct Properties and Verify Results 
• Casting Trials at Duraloy 
• Verify Welding Response of New High-

Strength Compositions 
• Develop an Alloy Property/Composition 

Prediction Software Tool for Commercial 
Applications 
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Tasks and Milestones 
• Computational thermodynamic analysis of various

phases in 
− Existing alloys (Complete) 
− New alloys (on-going) 

• Micro-characterization of specimens of existing
alloys for verification of computational models and
correlation with mechanical properties 
− On-going 

• Cast experimental size heats of new compositions 
− On-going 

• Determine their mechanical properties 
− On-going 
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Path to Commercialization 

• Develop new alloy compositions and make 
available to user partners 

• Develop new alloy compositions and make 
available to non-user partners 

• Manufactured prototype components will be 
made available to users for installation in their 
production systems 

• Alloy property/composition predicting software 
tool for commercial applications will be made 
available to a broad range of user companies 
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Overall Technical Approach

Microstructural
Characterization

Creep Property
Measurements

Thermodynamic
Modeling

Understand Behavior of
Existing Stainless Steel
(H-Series) Compositions

VALIDATION

Microstructural
Characterization

Creep Property
Measurements

Thermodynamic
Modeling

Develop New Stainless 
Steel
(H-Series) Compositions

PREDICTION
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Summary of Creep Data Available 
on HP-Alloys
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ANALYSIS OF DURALOY HP ALLOYS
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ThermoCalcTM Modeling of HP 
Alloys
• ThermoCalcTM uses existing information on free 

energies of various phases in Fe-alloys to predict 
which phases result in lowest free energy of the 
system
− Input to calculations: T, P, Alloying elements present, 

Phases to be considered in the calculations
− Output from calculations: Phases present, their 

compositions, and amounts
• Two types of calculations have been performed:

− Equilibrium, applicable to slow cooling
− Non-equilibrium (Scheil) applicable to rapid cooling
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Typical Output From ThermoCalcTM: 
Phases Present at Equilibrium as A 
Function of Temperature in ORNL 2
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Creep Properties of Duraloy Alloys 
Correlate well with Relative Amounts 
of M23C6 Predicted by Modeling
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Creep Properties of Duraloy Alloys 
Show Minimum Correlation to 
Amounts of MC Predicted by Modeling
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Micro-Characterization of  Alloys 

Two main purposes
• Test/validate ThermoCalcTM predictions 

regarding phases present, amounts of 
phases, and compositions of phases

• Study the sizes (fine vs. coarse) and 
distribution of phases within the 
microstructure (grain boundary vs. grain 
interior)
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Optical Microscopy Shows Significantly 
More Precipitation in the ORNL 2 Which 
has Better Creep Resistance
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Back-Scattered Scanning Electron 
Microscopy Shows Differences in the 
Types of Phases Present in the Two 
Alloys
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Energy-Dispersive X-ray Analysis Reveals that 
the Interdentric Phases in ORNL2 are NbC
and M23C6
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ThermoCalcTM Predictions Compare 
well with SEM Measurements of Area 
Fractions
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Transmission Electron Microscopy 
Shows Significant Precipitation of 
Fine MC and M23C6 Within The 
Grains in ORNL 2
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Objectives for Optimization of 
Target Microstructure of Alloys
• Promote the formation of fine, stable matrix precipitates 

while maximizing the strength of austenite

• Promote the formation of stable carbide structures to 
strengthen the grain boundaries

• Stabilize the austenite against the formation of embrittling
phases

• Increase the resistance of the matrix to microstructural
failure phenomena 
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Experimental Alloys Developed 
And Cast at ORNL

• Two series of alloys: High Si and Low Si

Compositions of High Si Alloys Cast at ORNL

Bal.

Bal.

Fe

35.16

34.63

Ni

22.97

22.69

Cr

High Nb0.0020.0360.132.11.490.760.41HP-2

Nominal Nb0.0020.0180.121.031.460.750.40HP-1

CommentsYXWNbSiMnCALLOY

ThermoCalc ModelingTM, Mechanical Property Measurements, and Micro-
characterization of these alloys are on-going
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Rupture Lives at 1093oC as a 
Function of Stress for High Si Alloys 
and Correlation with M23C6 Contents
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Rupture Lives of High Si Alloys at 
1093oC Show Minimal Correlation 
With MC Contents
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Experimental Alloys with Low 
Si Contents Cast at ORNL

Bal.

Bal.

Bal.

Bal.

Bal.

Fe

34.63

34.52

34.53

34.46

34.52

Ni

23.65

23.65

23.63

23.49

23.51

Cr

Medium X0.0020.0970.080.330.671.040.41HP-7

Medium Y0.020.0120.080.510.651.010.42HP-6

Small X0.0020.0280.080.50.661.030.48HP-5

High W0.0020.0130.321.00.650.960.41HP-4

Base Alloy0.0020.0120.081.020.650.970.38HP-3

CommentsYXWNbSiMnCALLOY
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Summary of Results of Creep 
Tests on Alloys with Low Si
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Weight fractions of M23C6 predicted by
ThermoCalcTM have been related to stress for 
1000 hour rupture at 982oC

• Creep properties of existing and newly developed HP alloys show 
clear correlation with M23C6 contents and will guide further alloy 
development
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Summary of Current Work

• Using micro-characterization, we have 
established the validity of ThermoCalcTM

modeling for these alloys
• A strong dependence of creep properties 

on M23C6 precipitation has been 
demonstrated
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Future Plans

• Continue to develop new alloys based on 
correlations learned from the current study

• Verify relationships between the creep properties 
and microstructure observed in the existing 
alloys in the newly developed alloys

• Centrifugal cast alloys and verify properties as a 
first step in the transfer of the new alloy 
composition to industrial applications


